Патент эжектор


Регулируемый эжектор

Владельцы патента RU 2426916:

Эжектор предназначен для освоения скважин с использованием аэрированных жидкостей. Эжектор состоит из корпуса активного сопла, приемной камеры, камеры смешения и диффузора. Корпус регулируемого эжектора снабжен подводящим патрубком подвода активной среды. В осевом канале корпуса установлен механизм регулирования размеров, состоящий из иглы, связанной через винтовую пару с механизмом привода, состоящим из шагового двигателя. Механизм регулирования размеров состоит из иглы, установленной асимметрично осевому каналу и связанной с винтовой парой, которая через муфту связана с шаговым двигателем, закрепленным на фланце насадкодержателя, установленного в осевом канале корпуса на резьбе. Механизм регулирования размеров состоит из ведущей шестерни, связанной с ведущей шестерней и муфтой, который закреплен на корпусе консолью. Технический результат — возможность управления регулирующими элементами эжектора, возможность одновременного плавного изменения положения трех взаимосвязанных параметров эжектора с подчинением единому алгоритму для стабильной работы устройства. 1 ил.

Изобретение относится к струйной технике и может быть использование в нефтегазодобывающей промышленности, в частности, для получения аэрированных жидкостей, двухфазных пен.

Известен струйный аппарат [А.С. СССР №909349, F04F 5/16, опубл. 28.02.82], содержащий приемную камеру, в которой установлены, с возможностью осевого перемещения активного сопла, камеры управления и смещения, а так же диффузор. Камера управления снабжена термочувствительным элементом, концы которого закреплены на активном сопле и стенке камеры управления, снабженной патрубком подвода и отвода теплоносителя.

Недостатком данного устройства являются:

— низкая точность настройки струйного аппарата из-за инертности системы, заключающейся в применении термочувствительного элемента в кинематике осевого перемещения активного сопла;

— изменение только одной составляющей, а именно только осевое перемещение активного сопла не позволяет оптимизировать работу струйного аппарата, что отражено в стандартных зависимостях расчета струйных аппаратов.

Анализ технических решений в данной области техники показал, что известна конструкция эжектора (см. А.С. №1710859, F04F 5/48, опубл. 07.02.92. Бюл. №5), в которой изменяются поперечные размеры камеры смешения и диффузора. Камера смешения подпружинена относительно активного сопла и установлена с возможностью осевого перемещения. Однако изменение этих размеров происходит спонтанно, без определения алгоритма.

Известна конструкция струйного насоса (см. А.С. №1343118, F04F 5/02, опубл. 07.10.87 г. Бюл. №37), принятая за прототип.

Устройство состоит из приемной камеры, камеры смещения, диффузора, активного сопла в приемной камере с регулирующей иглой, связанной с приводом, подводящими патрубками активной и пассивной среды.

Устройство работает следующим образом.

Активная среда подается к активной насадке с выходом струи в камеру смешения, куда подсасывается пассивная среда. В диффузоре кинетическая энергия смеси сред частично преобразуется в потенциальную энергию. Перемещая в осевом канале активного сопла иглу за счет привода, на наружной поверхности подводящего патрубка, регулируют подачу активной среды через активное сопло, управляя тем самым, суммарной подачей смеси сред к потребителю.

Основным недостатком вышеперечисленных устройств является то, что в них нет условий, обеспечивающих одновременное изменение трех взаимосвязанных параметров эжектора: поперечное сечение камеры смещения, поперечное сечение осевого канала активного сопла, расстояние от сопла до камеры смещения.

Выбор того или иного диаметра камеры сопла и соответственно диаметра камеры смещения определяется необходимой степенью аэрации, давлением смешанного потока. Изменение только одного из параметров не приводит к ожидаемому результату.

Технический результат, который может быть получен при реализации предлагаемого изобретения, заключается в следующем:

— возможность управления регулирующими элементами эжектора для получения на выходе из диффузора аэрированной жидкости, с заданными технологическими параметрами;

— возможность одновременного плавного изменения положения трех взаимосвязанных параметров эжектора с подчинением единому алгоритму, для стабильной работы устройства;

— применение шаговых двигателей для изменения технологических и конструктивных параметров элементов эжектора, с управлением их включения от микропроцессорного блока, с целью плавного регулирования основных элементов эжектора.

Технический результат достигается тем, что регулируемый эжектор содержит приемную камеру, камеру смешения, активное сопло, диффузор, подводящие и отводящий патрубки, регулирующую иглу, механизм привода иглы, при этом устройство снабжено насадкодержателем, установленным в осевом канале корпуса, механизмом привода, включающим фланец с венцом зубчатого колеса, кинематически связанным с шестерней шагового двигателя, снабженного муфтой, регулирующая игла установлена асимметрично в насадкодержателе и снабжена приводом в виде шагового двигателя, установленным на фланце насадкодержателя, осевой канал диффузора снабжен регулирующей иглой, связанной с механизмом осевых перемещений, включающим механизм регулирования хода в виде шагового двигателя, установленного на диффузоре, причем осевой канал подающего патрубка гидравлически связан через окна в теле насадкодержателя с его внутренней камерой, отводящий патрубок установлен на внешней стороне диффузора с возможностью гидравлической связи его осевого канала с осевым каналом диффузора над механизмом регулирования хода иглы, а шаговые двигатели регулирования осевого перемещения иглы, активной насадки, осевого перемещения насадкодержателя и осевого перемещения диффузора связаны с микропроцессором и подчинены единому алгоритму управления.

Конструкция устройства в разрезе показана на чертеже.

На чертеже в разрезе показано устройство в положении деталей для ведения процесса эжектирования.

Эжектор содержит корпус 1, активное сопло 2, приемную камеру 3, камеру смешения 4 и диффузор 5. Корпус 1 снабжен подводящим патрубком 6 для активной среды и патрубком 7 подвода пассивной среды и отводящим патрубком 8. В осевом канале корпуса 1 установлен механизм регулирования размеров 9 камеры смешения 4, который состоит из иглы 10, связанной через винтовую пару 11 с механизмом привода 12, состоящим из шагового двигателя 13.

Механизм регулирования размеров активного сопла 2 состоит из иглы 14, установленной асимметрично ее осевому каналу, и связанной с винтовой парой 15. Винтовая пара 15 в свою очередь связана через муфту 16 с шаговым двигателем 17, который закреплен на фланце 18, опирающимся на фланец 19 насадкодержателя 20, установленного в осевом канале корпуса 1 на резьбе.

Механизм регулирования размеров приемной камеры 3 состоит из ведомой шестерни 21, насадкодержателя 20 кинематически связанной с ведущей шестерней 22, которая через муфту 23 связана с шаговым двигателем 24, установленным на консоле 23, связанной с корпусом 1.

В теле насадкодержателя 20 выполнены окна 26, гидравлически соединяющие осевой канал 27 подводящего патрубка 6 с внутренней камерой 28 в насадкодержателе 20.

Работа регулируемого эжектора.

Для нормальной работы эжектора необходимо строгое соблюдение соосности камеры смешения и активного, сопла, а также поддержания в расчетных пределах расстояния от торца активного сопла до торца цилиндрической части камеры смешения.

В соответствии с существующими зависимостями (см. Соколов) по расчету основных конструктивных параметров их необходимо разделять по следующим технологическим параметрам — степени аэрации, давления смешанного потока на выходе, а также необходимой степени аэрации потока.

Исходя из этого, перемещение подвижных частей эжектора подчинено единому алгоритму.

Эжектор работает следующим образом.

Активная среда через подводящий патрубок 6 и окно 26 в теле насадкодержателя 20 поступает во внутреннюю камеру 28 и далее подается через активное сопло 2, а затем поступает в приемную камеру 3, в которую подается пассивная среда (газ) по подводящему патрубку 7. Активная среда смешивается с пассивной средой и поступает в камеру смешения 4, затем в диффузоре 5 статическое давление смеси повышается, и смесь через отводящий патрубок подается потребителю.

Подстройка под режимные параметры камеры смешения 3 осуществляется механическим регулированием размеров камеры смешения 3, т.е. путем изменения расстояния между торцом насадкодержателя 20 и торцом камеры смешения 4.

Подстройка под режимные параметры активного сопла 2 осуществляется путем изменения ее площади сечения, за счет ввода в осевой канал иглы 14. Ввод осуществляется за счет подачи сигнала на шаговый двигатель 17, который при работе осуществляет передачу крутящего момента через муфту 16 на иглу 14, которая вводится — перемещается в сторону активного сопла 2 с выходом в осевой канал.

Изменение расхода и скорости подачи смеси в диффузор 5 осуществляется за счет ввода в осевой канал иглы 10, связанной через винтовую пару 11 с механизмом привода 12 и шаговым двигателем 13.

Перемещение насадкодержателя 20 в осевой канал корпуса 1 осуществляется путем передачи крутящего момента на ведущую шестерню 22 от шагового двигателя 24.

Осуществляют вращение ведомой шестерни 21, жестко связанной с насадкодержателем 20, что приводит к его осевому перемещению в осевом канале корпуса 1. В течение перемещения насадкодержателя 20 существует постоянная связь осевого канала 27 подводящего патрубка 6 через окно 26 с внутренней камерой 29 в насадкодержателе 20.

Для нормальной работы эжектора необходимо соблюдение соосности каналов активного сопла камеры смещения и диффузора, а также необходимо поддерживать оптимальное расстояние от торца активного сопла до входа в камеру смешения.

Это расстояние определяется:

1=1÷1,5 диаметра осевого канала камеры смешения.

Алгоритм управления эжектором строится в соответствии с существующими зависимостями, определяющими устойчивый характер работы.

Выбор диаметра осевого канала активного сопла и соответственно диаметр камеры смешения определяется необходимой степенью аэрации и удовлетворением смешанного потока на выходе из диффузора.

Для динамичного изменения параметров в регулируемом эжекторе используется привод механизма осевых перемещений от шагового двигателя. Управление работой шаговых двигателей используется микропроцессор.

Алгоритм строится на основе следующих данных.

Напор, производительность и коэффициент эжекции эжектора определяется диаметром осевого канала, активного сопла и камеры смешения, а также расстоянием от торца активного сопла до входа потока в камеру смешения.

Формулы, по которым можно определить параметры работы эжектора: — объемный коэффициент эжекции (отношение объемов эжектируемой среды к рабочей жидкости).

U при условии Рс≥1 кг/см 2 определяется по формуле

Рр — давление эжектирующего (рабочего) потока, т.е. давление развиваемого агрегата на приемном патрубке эжектора, кг/см 2 ;

Рr — давление эжектирующего потока (давление в шлейфе или развиваемое компрессором), кг/см 2 .

Рс — давление смешанного потока на отводящем патрубке эжектора, кг/см 2 .

Отношение площадей сечения камеры смешения f3 и активного сопла fp1 может быть выражено следующим условием:

Стандартная зависимость параметров эжектора

При постоянном значении давления эжектирующего (рабочего) потока Рр увеличение отношения приводит к увеличению коэффициента эжекции и снижению давления смеси Рс и наоборот.

Устойчивость работы эжектора сохраняется при значениях, определяемых по эмпирической формуле:

Рж — давление рабочей жидкости на входе в камеру насадкодержателя, кг/см 2 ;

Рг — давление газа на входе в камеру смешения, кг/см 2 ;

q — расход рабочей жидкости, л/сек;

Рвых — требуемое давление на выходе из диффузора эжектора, кг/см 2 ;

λ — требуемая степень аэрации;

l1 — шаг изменения поперечного сечения осевого канала активного сопла, мм;

l2 — шаг изменения поперечного сечения камеры смешения, мм;

l3 — шаг изменения расстояния от торца активного сопла до камеры смешения, мм;

µ — коэффициент расхода сопла, равный 0,9;

dсн; dксн; Lн — начальные (исходные) значения диаметра активного сопла, диаметра камеры смешения и расстояния от торца активного сопла до камеры смешения.

1. Диаметр осевого канала активного сопла, dсн:

2. Диаметр камеры смешения, dксн

Расстояние от торца активного сопла до камеры смешения Lн=dксн (1÷1.5).

Регулируемый эжектор, содержащий приемную камеру, камеру смешения, активное сопло, диффузор, подводящие и отводящий патрубки, регулирующую иглу, механизм привода иглы, отличающийся тем, что устройство снабжено насадкодержателем, установленным в осевом канале корпуса, механизмом привода, включающим фланец с венцом зубчатого колеса, кинематически связанным с шестерней шагового двигателя, снабженного муфтой, регулирующая игла установлена асимметрично в насадкодержателе и снабжена приводом в виде шагового двигателя, установленным на фланце насадкодержателя, осевой канал диффузора снабжен регулирующей иглой, связанной с механизмом осевых перемещений, включающим механизм регулирования хода в виде шагового двигателя, установленного на диффузоре, причем осевой канал подающего патрубка гидравлически связан через окна в теле насадкодержателя с его внутренней камерой, отводящий патрубок установлен на внешней стороне диффузора с возможностью гидравлической связи его осевого канала с осевым каналом диффузора над механизмом регулирования хода иглы, а шаговые двигатели регулирования осевого перемещения иглы, активной насадки, осевого перемещения насадкодержателя и осевого перемещения диффузора связаны с микропроцессором и подчинены единому алгоритму управления.

Владельцы патента RU 2384756:

Эжектор предназначен для подогрева воды паром. Эжектор включает корпус, диффузор и входные патрубки для пара и воды. Имеется съемная перегородка, в которую встроены подвижные трубки с отверстиями. Технический результат — повышение эффективности подогрева. 2 ил.

Изобретение относится к бумажной промышленности и служит для подогрева воды паром.

Читайте так же:  Отложенный налог мсфо

Известна конструкция эжектора, состоящая из корпуса, диффузора и входных патрубков для пара и воды. (Ю.А.Степанов, Краткий политехнический словарь, Москва, Советская энциклопедия, 1955, с.571).

Данная конструкция малоэффективна.

Изобретение направлено на устранение данного недостатка.

Это достигается тем, что эжектор имеет корпус, диффузор и входные патрубки для пара и воды, при этом имеется съемная перегородка, в которую встроены подвижные трубки с отверстиями.

На фиг.1 изображен эжектор.

На фиг.2 показан его разрез в сечении А-А.

Эжектор имеет корпус 1, к которому съемно крепится перегородка 5. В перегородку 5 подвижно вставлены трубки с отверстиями 6. К перегородке 5 крепится диффузор 2. К корпусу 1 и диффузору 2 присоединены патрубки пара 3 и воды 4.

Эжектор работает следующим образом.

Смешивание пара и воды производится в диффузоре 2. Для подачи меньшего количества пара нужно переместить трубки с отверстиями 6 вправо, тогда живая площадь со стороны выхода пара в диффузор 2 уменьшится.

Эжектор имеет корпус, диффузор и входные патрубки для пара и воды, отличающийся тем, что имеется съемная перегородка, в которую встроены подвижные трубки с отверстиями.

Скважинный эжектор

Владельцы патента RU 2560969:

Изобретение относится к струйным насосам и может быть использовано в нефтедобывающих установках. Эжектор, устанавливаемый в колонне насосно-компрессорных труб, оснащенной пакером, с возможностью удаления его из скважины, содержит корпус с радиальными отверстиями, аксиальные корпусу сопло, приемную камеру, камеру смешения с диффузором, обратный клапан, взаимодействующий с седлом, распределитель потоков, включающий аксиальный, периферийные и радиальные каналы, раздвижной узел, содержащий раздвижную цангу, упорную втулку, которая оснащена фильтром, и переходник, соединенный с головкой для захвата эжектора монтажным инструментом, в которой выполнены каналы и расточка. Тубус дополнительно вмонтирован в колонну насосно-компрессорных труб, и упорное кольцо закреплено на упорной втулке срезными штифтами. Технический результат — повышение надежности посадки и эффективности эксплуатации эжектора. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, в частности к струйным насосам, и может быть использовано в нефтедобывающих установках.

Известен спускаемый в колонну лифтовых труб струйный аппарат с активным соплом, камерой смешения, диффузором и корпусом. Колонна лифтовых труб снабжена другим корпусом с выполненными ступенчато-посадочными расточками и седлом. Между верхней расточкой и седлом выполнены радиальные отверстия подвода активной среды. Корпус выполнен в виде ступенчатой втулки с наружными кольцевыми выступами, в расточках которой расположены основное сопло с каналами подвода пассивной среды, камера смешения с соплом в виде кольцевого зазора подвода активной среды, и диффузором. Кольцевые зазоры сопл сообщены с камерой подвода активной среды, которая сообщена с подводом активной среды через радиальные отверстия. Струйный аппарат в сборе выполнен с разъемом и установлен в корпусе колонны лифтовых труб с возможностью установки и удаления его на кабеле и выполнен опирающимся, по крайней мере, одним из наружных кольцевых выступов корпуса струйного аппарата установки на опорное седло корпуса колонны лифтовых труб. (Патент RU №2171920 C1. Скважинная насосная установка. — МПК: F04F 5/14. — 10.08.2001).

Известен скважинный эжектор, включающий стационарный корпус с выполненными в нем отверстиями, сопло, распределитель потоков, выполненный с периферийными осевыми каналами и состоящий из сопла, соединенного с центральным каналом, рабочую вставку, состоящую из кармана с полостью смешанного потока, диффузора, камеры смешения, приемной камеры, патрубка, соединяющего камеру смешения и приемную камеру с распределителем потоков, извлекаемую вставку, установленную в верхней части стационарного корпуса внутри полости смешанного потока и состоящую из корпуса с уплотнительными манжетами, выполненного с проточками и внутренним отверстием для возможности движения поршня, соединенного со штоком с захватной головкой, при этом на штоке располагается пружина. Стационарный корпус выполнен разъемным, в нижней части которого находится распределитель потоков, соединенный с упорной втулкой, выполненной с каналом инжектируемого потока и оснащенной фильтром. (Патент RU №137994 U1. Стационарный скважинный струйный насос.- МПК: F04F 5/00. — 27.02.2014).

Наиболее близким аналогом, принятым за прототип, является скважинный эжектор, включающий расположенные в колонне насосно-компрессорных труб выше пакера корпус с выполненными в нем отверстиями, рабочую вставку с возможностью извлечения из скважины, в которой смонтированы насадкодержатель и распределитель потоков, выполненный с периферийными осевыми каналами подвода пассивного потока, центральным и радиальными каналами отвода смешанного потока. В центральном канале распределителя потоков размещены диффузор и камера смешения, соединенная посредством резьбы с нижней частью насадкодержателя, в котором установлено активное сопло, жестко зафиксированное прижимной гайкой, приемная камера с перепускными окнами для входа пассивного потока, образованная между активным соплом и камерой смешения, головка для захвата ловильным инструментом, содержащая радиальные каналы для входа активного потока и внутреннюю проточку для размещения насадкодержателя, а также раздвижной узел, присоединенный к нижней части распределителя потоков и включающий упорную втулку и регулятор потока, в которых выполнены радиальные отверстия, и обратный клапан, размещенный во внутренней проточке регулятора потока, последний соединен с основанием, в котором выполнены отверстия для входа продукции из скважины и резьбовое гнездо для присоединения глубинных приборов. (Патент RU №88750 U1. Скважинный извлекаемый струйный насос. — МПК: F04F 5/14. — 20.11.2009). Данное техническое решение принято за прототип.

Недостатком известных технических решений является то, что они предназначены для нагнетания в межтрубное пространство скважины энергетического газа или жидкости высокого давления с целью отбора пластовой смеси (флюида) и отсутствие фиксации струйного насоса в колонне насосно-компрессорных труб, что усложняет эксплуатацию нефтедобывающих скважин.

Основной задачей, на решение которой направлено заявляемое изобретение, является обеспечение надежной посадки и фиксации скважинного эжектора, спускаемого внутри колонны насосно-компрессорных труб, и улучшение извлечения пластовой жидкости (флюида) из скважин.

Техническим результатом является повышение надежности посадки скважинного эжектора, спускаемого в скважину внутри колонны насосно-компрессорных труб, и эффективности эксплуатации нефтедобывающих скважин.

Указанный технический результат достигается тем, что в известном скважинном эжекторе, устанавливаемом в колонне насосно-компрессорных труб, оснащенной пакером, с возможностью удаления его из скважины, содержащем корпус с радиальными отверстиями, аксиальные корпусу сопло, приемную камеру, камеру смешения с диффузором, обратный клапан, взаимодействующий с седлом, распределитель потоков, включающий аксиальный, периферийные и радиальные каналы, раздвижной узел, упорную втулку и переходник, соединенный с головкой для захвата эжектора монтажным инструментом, в которой выполнены каналы и расточка, согласно предложенному техническому решению аксиальный канал в распределителе потоков выполнен в виде глухого отверстия, сообщающегося с радиальными каналами распределителя потоков, в последнем посредством кольцевых манжет установлено седло для обратного клапана с упором буртика во внутренний торец расточки, выполненной со стороны нижнего торца распределителя потоков, при этом в седле выполнены аксиальное глухое отверстие и радиальные каналы с проточкой, сообщающиеся с радиальными каналами, дополнительно выполненными в стенке распределителя потоков, последний снизу соединен с упорной втулкой, которая оснащена фильтром и устанавливается в колонне насосно-компрессорных труб посредством кольцевой манжеты и раздвижного узла, содержащего раздвижную цангу, под которой на упорной втулке выполнена проточка на глубину, по меньшей мере, равную высоте кулачков цанги, подвижно установленной на упорной втулке, с упором на уступ внутренней поверхности тубуса, дополнительно вмонтированного в колонну насосно-компрессорных труб, и упорное кольцо, закрепленное на упорной втулке срезными штифтами, ограничивающее аксиальное смещение цанги, а в стенке тубуса выполнены радиальные каналы и расточка, последняя образует кольцевую полость, сообщающуюся с дополнительными радиальными каналами распределителя потоков, при этом аксиальный канал упорной втулки сообщается с периферийными каналами распределителя потоков, последний сверху сопряжен с корпусом посредством гильзы и установлены в тубусе посредством кольцевых манжет, образуя между собой кольцевой канал сообщения между радиальными отверстиями в корпусе и каналами в распределителе потоков, при этом снизу корпуса установлено сопло, образуя с распределителем потоков камеру сообщения между периферийными каналами и соплом, а противоположный торец корпуса соединен с переходником, внутри которых размещены диффузор, закрепленный в расточке головки и сообщающийся с ее наклонными каналами, и камера смешения, последняя на уровне радиальных отверстий в стенке корпуса образует совместно с соплом приемную камеру;

диаметр посадочного места упорной втулки между уступами на внутренней поверхности тубуса, по крайней мере, не меньше диаметра разжимной цанги;

раздвижной узел выполнен в виде разжимной цанги, подвижно установленной на упорной втулке с проточкой на глубину, по меньшей мере, равную высоте кулачков, ограниченной в аксиальном направлении упорным кольцом с диаметром, по крайней мере, не большим диаметра посадочного места упорной втулки эжектора между уступами на внутренней поверхности тубуса и закрепленным на упорной втулке срезными штифтами;

уступы на внутренней поверхности тубуса выполнены с наклоном с возможностью сжатия кулачков разжимной цанги при посадке и удалении эжектора;

на фильтре выполнен наружный направляющий конус, для прохождения которого через тубус в последнем со стороны верхнего торца выполнен внутренний улавливающий конус;

радиальные каналы в стенке тубуса выполнены в виде продольных щелей на длине расточки;

диффузор выполнен сборным, верхняя часть которого соединена с головкой для монтажного инструмента, а нижняя часть выполнена совместно с камерой смешения, причем ступенчатой снаружи с упором на уступ внутренней поверхности корпуса.

Приведенный заявителем анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественными всем признакам заявленного скважинного эжектора, отсутствуют. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «новизна».

Результаты поиска известных решений в данной области техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого технического решения, показали, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявляемого технического решения преобразований на достижение указанного технического результата. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «изобретательский уровень».

Заявленное техническое решение может быть реализовано на любом предприятии машиностроения из общеизвестных материалов по принятой технологии и успешно использовано на нефтедобывающих скважинах. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «промышленная применимость».

На фиг. 1 показан общий вид скважинного эжектора в разрезе; на фиг. 2 — тубус под скважинный эжектор, вмонтированный в колонну насосно-компрессорных труб; на фиг. 3 — скважинный эжектор в рабочем положении.

Скважинный эжектор содержит соединенные между собой корпус 1, распределитель потоков 2, упорную втулку 3, оснащенную фильтром 4, и головку 5 для захвата эжектора монтажным инструментом (условно не показан), соединенную с корпусом 1 посредством переходника 6. В корпусе 1 выполнено аксиальное ступенчатое отверстие, в котором на уровне нижнего торца установлено сопло 7, а с противоположного торца — диффузор 8 и камера смешения 9, выполненные со ступенчатой наружной поверхностью, которые с упором в уступы поверхностей совместно с соплом 7 на уровне радиальных отверстий 10, выполненных в стенке корпуса 1, образуют приемную камеру 11. Диффузор 8 соединен с расточкой головки 5, в которой выполнены наклонные каналы 12, сообщающиеся с выходом диффузора 8. В распределителе потоков 2 выполнены аксиальный канал 13, периферийные каналы 14 и радиальные каналы 15 и 16. Между нижним торцом корпуса 1 и распределителем потоков 2 образована камера 17, сообщающая периферийные каналы 14 с соплом 7. Аксиальный канал 13 выполнен в виде глухого отверстия, сообщающегося с радиальными каналами 15 и 16 распределителя потоков 2, в последнем посредством кольцевых манжет 18 установлено седло 19, взаимодействующее с обратным клапаном 20, с упором буртика в торец расточки, выполненной в распределителе потоков 2 со стороны нижнего торца. Седло 19 выполнено в виде глухого отверстия с радиальными каналами с проточкой на уровне радиальных каналов 16 распределителя потоков 2. Распределитель потоков 2 соединен с упорной втулкой 3, в последней выполнен аксиальный канал 21 с расширяющимся конусом, сообщающийся с периферийными каналами 14 распределителя потоков 2, с одной стороны, и, с другой, — с фильтром 4. Снаружи корпуса 1 и распределителя потоков 2 с помощью кольцевых манжет 22 установлена гильза 23, образующая с проточками на корпусе 1 и распределителе потоков 2 кольцевой канал 24 сообщения между радиальными отверстиями 10 в корпусе 1 и радиальными каналами 15 в распределителе потоков 2. На упорной втулке 3 подвижно установлена разжимная цанга 25 раздвижного узла, под которой выполнена проточка 26 на глубину, по меньшей мере, равную высоте кулачков цанги 25, ограниченной в аксиальном направлении упорным кольцом 27, закрепленном на упорной втулке 3 срезными штифтами 28 (Фиг. 1). Для установки скважинного эжектора с возможностью удаления его из скважины, в колонну насосно-компрессорных труб 29 ниже пакера (условно не показан) посредством трубной муфты 30 вмонтирован тубус 31, в последнем выполнены внутренние уступы 32 для упора эжектора при посадке в тубус 31 и конусный уступ 33 для зацепления его разжимной цангой 25 в колонне насосно-компрессорных труб 29, а для герметичности посадки скважинного эжектора в тубусе 31 корпус 1 снабжен кольцевой манжетой 34 и упорная втулка 3 — кольцевой манжетой 35 (Фиг. 2). В тубусе 31 со стороны торца выполнен направляющий конус, а стенке выполнены радиальные щели 36 и расточка 37, последняя образует с гильзой 23 и распределителем потоков 2 кольцевую полость 38, сообщающую радиальные каналы 16 распределителя потоков с межтрубной полостью скважины через радиальные щели 36. (Фиг. 3).

Читайте так же:  Нотариус спб цены на услуги

Скважинный эжектор работает следующим образом.

В скважину спускают колонну насосно-компрессорных труб 29, оснащенную тубусом 31, вмонтированным посредством трубной муфты 30 ниже пакера, последним закрепляют в скважине. С помощью монтажного инструмента скважинный эжектор зацепляют за головку 5 и спускают по колонне насосно-компрессорных труб 29 до упора уступом упорной втулки 3 в уступ 32 тубуса 31. Скважинный затвор герметично устанавливается в тубус 31 посредством кольцевых манжет 34 и 35, расположенных на корпусе 1 и упорной втулке 3. При посадке скважинного эжектора в тубус 31 кулачки разжимной цанги 25 раздвижного узла сжимаются под действием внутренней цилиндрической поверхности между уступами 32 и 33, и за уступом 33 кулачки цанги 25 раздвигаются и зацепляются за уступ 33 тубуса 31. Обратным перемещением скважинного эжектора упорная втулка 3 фиксирует наружной поверхностью кулачки цанги 25 в разжатом состоянии с упором в аксиальном направлении упорным кольцом 27, закрепленным на упорной втулке 3 срезными штифтами 28.

Центробежным насосом под давлением подают скважинную жидкость в колонну насосно-компрессорных труб 29 через фильтр 4, аксиальный канал 21 и расширяющий конус упорной втулки 3 в периферийные каналы 14 распределителя потоков 2, из которых через камеру 17 активный поток жидкости поступает в сопло 7, из последнего жидкость струей направляется в камеру смешения 9, создавая разрежение в приемной камере 11. Одновременно в приемную камеру 11 устремляется пассивный поток газа или жидкости из межтрубной полости скважины через продольные щели 36, кольцевую полость 38, радиальные каналы 16 распределителя потоков 2, седло 19 с обратным клапаном 20, радиальные каналы 15, кольцевой канал 24 и радиальные отверстия 10. Газ или жидкость, поступающие из радиальных отверстий 10 в приемную камеру 11, увлекается струей жидкости из сопла 7 в камеру смешения 9, из которой скважинная газожидкостная смесь под давлением поступает в диффузор 8 и далее через наклонные каналы 12 головки 5 поднимается по колонне насосно-компрессорных труб 29 в устье скважины.

Удаление скважинного эжектора из колонны насосно-компрессорных труб 29 осуществляется захватом головки 5 монтажным инструментом с последующим аксиальным перемещением скважинного эжектора за головку 5 вверх с усилием, превышающим усилие среза срезных штифтов 28. В результате среза штифтов 28 упорное кольцо 27 смещается кулачками цанги 25 вниз по упорной втулке 3 до упора в торец фильтра 4, при этом кулачки цанги 25 раздвижного узла прижимаются к проточке упорной втулки 3 под воздействием упора 33 и скважинный эжектор свободно удаляется из скважины.

Использование предложенного скважинного эжектора в нефтедобывающей промышленности может значительно повысить эффективность эксплуатации скважин в соответствии с требованиями Правил охраны недр, утвержденных постановлением Госгортехнадзора РФ №71 от 06 июня 2003 г.

1. Скважинный эжектор, устанавливаемый в колонне насосно-компрессорных труб, оснащенной пакером, с возможностью удаления его из скважины, содержащий корпус с радиальными отверстиями, аксиальные корпусу сопло, приемную камеру, камеру смешения с диффузором, обратный клапан, взаимодействующий с седлом, распределитель потоков, включающий аксиальный, периферийные и радиальные каналы, раздвижной узел, упорную втулку и переходник, соединенный с головкой для захвата эжектора монтажным инструментом, в которой выполнены каналы и расточка, отличающийся тем, что аксиальный канал в распределителе потоков выполнен в виде глухого отверстия, сообщающегося с радиальными каналами распределителя потоков, в последнем посредством кольцевых манжет установлено седло для обратного клапана с упором буртика во внутренний торец расточки, выполненной со стороны нижнего торца распределителя потоков, при этом в седле выполнены аксиальное глухое отверстие и радиальные каналы с проточкой, сообщающиеся с радиальными каналами, дополнительно выполненными в стенке распределителя потоков, последний снизу соединен с упорной втулкой, которая оснащена фильтром и устанавливается в колонне насосно-компрессорных труб посредством кольцевой манжеты и раздвижного узла, содержащего раздвижную цангу, под которой на упорной втулке выполнена проточка на глубину, по меньшей мере, равную высоте кулачков цанги, подвижно установленной на упорной втулке, с упором на уступ внутренней поверхности тубуса, дополнительно вмонтированного в колонну насосно-компрессорных труб, и упорное кольцо, закрепленное на упорной втулке срезными штифтами, ограничивающее аксиальное смещение цанги, а в стенке тубуса выполнены радиальные каналы и расточка, последняя образует кольцевую полость, сообщающуюся с дополнительными радиальными каналами распределителя потоков, при этом аксиальный канал упорной втулки сообщается с периферийными каналами распределителя потоков, последний сверху сопряжен с корпусом посредством гильзы и установлен с ними в тубусе посредством кольцевых манжет, образуя между собой кольцевой канал сообщения между радиальными отверстиями в корпусе и каналами в распределителе потоков, при этом снизу корпуса установлено сопло, образуя с распределителем потоков камеру сообщения между периферийными каналами и соплом, а противоположный торец корпуса соединен с переходником, внутри которых размещены диффузор, закрепленный в расточке головки и сообщающийся с ее наклонными каналами, и камера смешения, последняя на уровне радиальных отверстий в стенке корпуса образует совместно с соплом приемную камеру.

2. Скважинный эжектор по п. 1, отличающийся тем, что диаметр посадочного места упорной втулки между уступами на внутренней поверхности тубуса, по крайней мере, не меньше диаметра разжимной цанги.

3. Скважинный эжектор по п. 1, отличающийся тем, что раздвижной узел выполнен в виде разжимной цанги, подвижно установленной на упорной втулке с проточкой на глубину, по меньшей мере, равную высоте кулачков, ограниченной в аксиальном направлении упорным кольцом с диаметром, по крайней мере, не большим диаметра посадочного места упорной втулки эжектора между уступами на внутренней поверхности тубуса и закрепленным на упорной втулке срезными штифтами.

4. Скважинный эжектор по п. 1, отличающийся тем, что уступы на внутренней поверхности тубуса выполнены с наклоном с возможностью сжатия кулачков разжимной цанги при посадке и удалении эжектора.

5. Скважинный эжектор по п. 1, отличающийся тем, что на фильтре выполнен наружный направляющий конус, для прохождения которого через тубус в последнем со стороны верхнего торца выполнен внутренний улавливающий конус.

6. Скважинный эжектор по п. 1, отличающийся тем, что радиальные каналы в стенке тубуса выполнены в виде продольных щелей на длине расточки.

7. Скважинный эжектор по п. 1, отличающийся тем, что диффузор выполнен сборным, верхняя часть которого соединена с головкой для монтажного инструмента, а нижняя часть выполнена совместно с камерой смешения, причем ступенчатой снаружи с упором на уступ внутренней поверхности корпуса.

Газовый эжектор

Владельцы патента RU 2584767:

Изобретение относится к нефтегазовой промышленности и может использоваться для промысловой подготовки и переработки газа и газового конденсата на газоконденсатных или нефтегазоконденсатных месторождениях. Газовый эжектор содержит полый цилиндрический корпус с форкамерами и патрубками высоконапорного газа, низконапорного газа и смеси газов, размещенную в корпусе сменную проточную часть, включающую сопло с входным коническим участком и камеру смешения с диффузором. Сопло содержит турбулизатор пленки жидкости, выполненный в виде поочередно расположенных по длине входного участка, по меньшей мере двух кольцевых впадин и выступов. Сопло закреплено на съемной втулке, на которой по периметру выполнены продольные щели, а в торцовой части содержится поперечная перегородка с обтекателем. Камера смешения с диффузором закреплена в корпусе радиальными штифтами, которые сопряжены с пазами на камере смешения. Технический результат — повышение надежности газового эжектора при работе в условиях подготовки газа на газоконденсатных месторождениях и снижение трудоемкости наладки и обслуживания устройства. 5 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к нефтегазовой промышленности и может использоваться для промысловой подготовки и переработки газа и газового конденсата на газоконденсатных или нефтегазоконденсатных месторождениях в составе установок низкотемпературной конденсации (сепарации) с использованием способа ступенчатой дегазации или ректификации нестабильного конденсата для его частичной или полноценной стабилизации с эжектором для утилизации газа дегазации (стабилизации, деэтанизации).

В настоящее время на газоконденсатных месторождениях достаточно широко применяются газовые эжекторы, в которых давление низконапорного (НН) газа дегазации газового конденсата увеличивают за счет смешения этого потока с потоком высоконапорного (ВН) газа установки промысловой подготовки газа. Газовые эжекторы обычно выполняют по схемам с осевым или радиальным подводом к корпусу ВН газа, с радиальным подводом НН газа и осевым выходом из корпуса смеси газов. Для повышения надежности газовых эжекторов, работающих в режиме гидратообразования в проточной части, в поток ВН газа вводят ингибитор, выполняют подогрев камеры смешения или используют другие способы.

Однако актуальной проблемой пока остается повышение надежности газовых эжекторов на режимах с гидратообразованием, в том числе обеспечение стабильной работы эжекторов при уменьшенных подачах ингибитора.

Традиционные газовые эжекторы [1] с осевым подводом ВН газа, радиальным подводом НН газа и осевым выходом смеси газов известны достаточно давно. Они имеют классическое конструктивное исполнение и включают форкамеру высокого давления, сопло ВН газа, форкамеру газа низкого давления, камеру смешения с диффузором. Эжектирующий ВН газ поступает в камеру смешения через сопло, НН газ поступает в ту же камеру смешения через кольцевую щель в виде разделенных потоков с различными параметрами.

Недостатком таких эжекторов является большая трудоемкость пусконаладочных работ при фланцевом креплении деталей проточной части в корпусе аппарата и повышенный расход ингибитора гидратообразования в условиях промысловой подготовки газа на газоконденсатных месторождениях.

Известен газовый эжектор (патент RU №2074988 от 10.03.1997 г.). В этом устройстве для предотвращения отложений гидратов и парафинов на рабочих поверхностях, наружная поверхность сопла теплоизолирована, а места перехода полости сопла в камеру смешения и камеры смешения в диффузор выполнены в виде кольцевых пазов, заполненных пористым материалом и соединенных каналами с резервуаром для подачи ингибитора.

К недостаткам этого устройства можно отнести следующее. Для устойчивой подачи ингибитора через пористые стенки камеры смешения требуется дополнительная фильтрация ингибитора, что затрудняет эксплуатацию.

Известен газовый эжектор (патент RU №2151920 от 27.06.2000 г.), который выбран в качестве наиболее близкого аналога к настоящему изобретению. Он содержит полый корпус с форкамерами и патрубками ВН и НН газа и смеси газов и размещенную в корпусе сменную проточную часть с соплом и камерой смешения с диффузором.

Камера смешения снабжена осевым фланцевым креплением в корпусе, что является недостатком такого устройства, так как затрудняет его сборку, а внутренняя поверхность входного участка сопла выполнена с гладкими стенками, что приводит к увеличению расхода ингибитора гидратообразования в условиях подготовки газа на газоконденсатных месторождениях.

Также в дополнение к вышеизложенному можно добавить, что из уровня других областей техники известны технические решения, относящиеся к конструктивному исполнению сопла, на внутренней поверхности которого выполнены различные углубления, канавки и другие элементы. Например, в конструкции струйного насоса (АС №1112154 от 07.09.1984 г.) для повышения надежности и КПД на внутренней поверхности пассивного сопла выполнены винтовые канавки. За счет них осадок (пассивная среда), содержащийся в жидкости, получает вращательное движение, в результате чего производится взмучивание осадка в зоне входного отверстия и размывание скоплений на входе в сопло. Это предотвращает засорение и уменьшает гидравлическое сопротивление проточной части.

Подобные технические решения как устройства в целом, так и его отдельных элементов могут использоваться, например, в системах гидротранспорта жидкостей с взвесями, но не предназначены для эжекции газовых сред, что можно отнести к их недостаткам относительно заявленного изобретения.

Технической задачей, на решение которой направлено настоящее изобретение, является повышение надежности газового эжектора при работе в условиях подготовки газа на газоконденсатных месторождениях и снижение трудоемкости наладки и обслуживания устройства.

Читайте так же:  Системные требования к игре the walking dead

Поставленная задача решается за счет предлагаемого устройства газового эжектора, в котором такие известные признаки, как полый цилиндрический корпус с форкамерами и патрубками высоконапорного газа, низконапорного газа и смеси газов, размещенная в корпусе сменная проточная часть, включающая сопло с входным коническим участком и камеру смешения с диффузором, имеют следующие отличительные особенности. Сопло содержит турбулизатор пленки жидкости, выполненный в виде поочередно расположенных по длине входного конического участка по меньшей мере двух кольцевых впадин и выступов, сопло закреплено на съемной втулке с выполненными по периметру продольными щелями, образующими каналы для прохождения высоконапорного газа от форкамеры к соплу, и содержащей в торцовой части поперечную перегородку с обтекателем, камера смешения с диффузором закреплена в корпусе радиальными штифтами, которые сопряжены с пазами, выполненными на камере смешения.

Кроме того, задача будет успешно выполнена, если:

— входной конический участок сопла выполнен с углом от 12° до 18°;

— длина входного конического участка сопла составляет от 2,8 до 3,2 диаметра сопла в критическом сечении;

— ширина впадин турбулизатора пленки жидкости составляет от 0,1 до 0,2 диаметра сопла в критическом сечении;

— высота выступов турбулизатора пленки жидкости составляет от 0,03 до 0,05 диаметра сопла в критическом сечении;

— съемная втулка содержит кольцевую канавку, сообщенную каналами, расположенными в сопле, с впадинами турбулизатора пленки жидкости.

Достигаемый данным изобретением технический результат заключается в уменьшении расхода ингибитора гидратообразования и снижении порога осаждения кристалогидратов, а также обеспечении стабильной работы оборудования в составе технологической линии и сокращении межремонтного периода.

Более подробно изобретение поясняется чертежами, на которых изображено следующее:

фиг. 1 — общий вид газового эжектора;

фиг. 2 — продольный разрез сопла;

фиг. 3 — сечение A-A на фиг. 1;

фиг. 4 — продольный разрез съемной втулки с кольцевой канавкой и сопла с каналами, сообщенными с турбулизатором пленки жидкости.

Газовый эжектор включает полый цилиндрический корпус 1 с кольцевой форкамерой 2 и подключенным к ней патрубком 4 для подачи ВН газа, форкамерой 3 и подключенным к ней патрубком 5 для подачи НН газа, и патрубок 6 для отвода смеси газов. С помощью накидной гайки 7 на корпусе закреплена съемная крышка 8. Внутри полости корпуса размещены съемные детали проточной части: сопло 9 и цилиндрическая камера смешения 10 с коническим диффузором 11. Основным геометрическим параметром камеры смешения является ее диаметр Dк. Сопло закреплено на съемной полой втулке 12, которая имеет оптимальное конструктивное решение для удобства сборки. А именно она содержит выполненные по периметру втулки продольные щели 13, в торцовой части втулки расположена поперечная перегородка 14 с обтекателем 15. Продольные щели 13 образуют каналы для прохождения ВН газа от форкамеры 2 к соплу 9. Обтекатель 15 предусмотрен для уменьшения потерь давления на входе ВН газа в сопло.

Проточная часть сопла имеет форму сопла Лаваля с коническими входным 16 и выходным 17 участками и плавным тороидальным сопряжением между ними в зоне критического сечения.

Основные геометрические параметры сопла характеризуются величиной угла входного конического участка α°, длиной входного участка l и диаметром критического сечения сопла d * . На входном коническом участке сопло содержит турбулизатор пленки жидкости, выполненный в виде поочередно расположенных по длине кольцевых впадин 18 и 20, имеющих ширину b, и выступов 19 и 21 с высотой с относительно впадин.

Зазор между соплом и камерой смешения 22 имеет плавно суживающееся проходное сечение для подачи НН газа от соответствующего патрубка 5 в камеру смешения 10. Величину этого зазора регулируют подбором толщины прокладки 23.

Положение камеры смешения с диффузором в корпусе газового эжектора зафиксировано радиальными штифтами 24, сопряженными с кольцевым пазом 25 камеры смешения. Штифты выполнены с отверстием 26 для съемника. Полости размещения штифтов 27 заглушены пробками 28.

Съемная втулка может дополнительно содержать кольцевую канавку 29, а в сопле выполнены каналы 30, которые сообщаются с впадинами 18 турбулизатора пленки жидкости.

Кольцевая канавка 29 и каналы 30 предназначены для дополнительного распыливания пленки жидкости, которая образуется на входном участке сопла в процессе работы.

Устройство работает следующим образом.

Эжектирующий ВН газ по патрубку 4 поступает в форкамеру 2 и далее по каналам, образованным продольными щелями 13 съемной втулки 12, поступает в сопло 9, где осуществляется преобразование располагаемого перепада давления ВН газа в скоростной напор с понижением температуры газа и конденсацией растворенных в газе тяжелых углеводородов и водных растворов.

Эжектируемый НН газ по патрубку 5 и зазору 22 поступает в камеру смешения 10 и диффузор 11, где осуществляется взаимодействие потоков и их торможение. При этом давление смеси газов увеличивается. Смесь газов отводят по патрубку 6.

Для предотвращения образования гидратов в проточной части устройства в поток ВН газа подают ингибитор, например метиловый спирт, образующий со сконденсированной водой в газе водный раствор. На входном коническом участке сопла упомянутый водный раствор включает взвешенные в газе капли и пленку жидкости на стенке сопла.

В том случае если внутренняя поверхность сопла выполнена гладкой (как, например, в упомянутом выше аналоге по патенту RU №2151920), наличие пленки жидкости на стенке такого гладкого сопла ухудшает смешивание и массообмен между газом и жидкостью. При недостаточной подаче ингибитора это приводит к образованию гидратов в проточной части устройства, что снижает его надежность.

Конструкция сопла с турбулизатором пленки жидкости на входном коническом участке, выполненным в виде поочередно расположенных, например, как проиллюстрировано на фиг. 2, двух кольцевых впадин и выступов, улучшает смешивание и массообмен между газом и жидкостью в потоке ВН газа. Это повышает надежность устройства при недостаточной подаче ингибитора.

Экспериментально было установлено, что наиболее оптимальными и предпочтительными геометрическими размерами конструкции сопла в рассматриваемых условиях являются такие, как:

— величина угла α° расположена в границах от 12° до 18°;

— длина входного конического участка l составляет от 2,8d * до 3,2d * (так называемое длинное сопло);

— ширина кольцевых впадин турбулизатора пленки жидкости b выбрана в диапазоне от 0,1d * до 0,2d * ;

— высота выступов с турбулизатора пленки жидкости относительно впадин находится в пределах от 0,03d * до 0,05d * .

В отличие от сопла с гладкими стенками конструкция сопла с турбулизатором пленки жидкости, содержащем поочередно расположенные по длине входного участка сопла кольцевые впадины и выступы, улучшает распыл водных растворов ингибитора гидратообразования и смешивание газожидкостных потоков в сопле, что повышает надежность работы газового эжектора в условиях подготовки газа на газоконденсатных месторождениях при ограниченной подаче ингибитора. Более того, применение длинного сопла уменьшает скольжение капель в газовом потоке и неравновесность расширения двухфазного потока в сопле, что повышает эффективность эжектирования НН газа.

Крепление сопла на съемной втулке с поперечной перегородкой, обтекателем и продольными щелями для прохода ВН газа от форкамеры к соплу, а также крепление камеры смешения с диффузором в корпусе с помощью радиальных штифтов упрощает сборку и разборку газового эжектора.

Также необходимо отметить, что подобное крепление внутренних конструктивных элементов в заявленном изобретении по сравнению с аналогами, использующими фланцевые способы крепления в корпусе устройства внутренних элементов, приводит к дополнительному положительному результату, а именно уменьшается масса газового эжектора и, следовательно, снижается металлоемкость и массогабаритные параметры в целом.

Использование конструкции сопла с кольцевой канавкой 29 и каналами 30 предпочтительно при повышенном, например, более 1-2% содержании капельной жидкости в ВН газе до сопла. При этом перепуск части жидкости из канавки 29 через каналы 30 в полость впадины 18 снизит расход жидкости, диспергируемой на выступе 19 турбулизатора сопла, и улучшит распыливание пленки жидкости в сопле.

Все признаки настоящего изобретения могут быть реализованы в конкретные конструктивные элементы (детали, сборочные единицы) газового эжектора с использованием традиционных технологий изготовления трубопроводов и аппаратов.

Работоспособность устройства была проверена на установке комплексной подготовки газа к транспорту УКПГ-2 Северо-Уренгойского газоконденсатного месторождения. УКПГ-2 включает 3 технологические линии с эжекторами для утилизации газа дегазации газового конденсата из выветривателей конденсата и централизованную подачу ингибитора.

Типичные параметры эксплуатации газового эжектора на УКПГ-2 приведены в следующей таблице.

Первоначальная конструкция газовых эжекторов включала гладкие сопла Лаваля с углом вершины входного участка 60°, установленные на съемных втулках. Для крепления камер смешения с диффузором в корпусах эжекторов использовались радиальные штифты.

На фактических режимах работы в одинаковых условиях по параметрам ВН и смеси газов и при одинаковой конструкции эжекторов один из эжекторов не обеспечивал утилизацию НН газа вследствие отложения гидратов в виде твердого кольцевого слоя белого цвета на внутренней стенке камеры смешения при неравномерной подаче ингибитора в эжекторы.

Замена исходного сопла в проблемном эжекторе на длинное сопло с турбулизатором пленки жидкости согласно настоящему изобретению с величиной угла конуса на входном участке 15° и длиной входного участка 3d * при прочих равных условиях обеспечила совместную работу трех эжекторов за счет повышения эффективности и надежности проблемного эжектора.

Таким образом, настоящее изобретение решает поставленную задачу повышения надежности работы газового эжектора в условиях подготовки газа на газоконденсатных месторождениях при ограниченной подаче ингибитора, облегчает сборку и наладку оборудования, что приводит к достижению указанного технического результата.

1. Всесоюзный научно-исследовательский институт природных газов (ВНИИГАЗ). Инструкция по эксплуатации эжекторов. Разработана ст.н.с. И.Н. Царевым, П.Г. Сидор, Москва, 1982 г., стр. 4-5, стр. 6, рис. I — Газовый эжектор.

1. Газовый эжектор, включающий полый цилиндрический корпус с форкамерами и патрубками высоконапорного газа, низконапорного газа и смеси газов, размещенную в корпусе сменную проточную часть, включающую сопло с входным коническим участком и камеру смешения с диффузором, отличающийся тем, что сопло содержит турбулизатор пленки жидкости, выполненный в виде поочередно расположенных по длине входного конического участка по меньшей мере двух кольцевых впадин и выступов, сопло закреплено на съемной втулке с выполненными по периметру продольными щелями, образующими каналы для прохождения высоконапорного газа от форкамеры к соплу, и содержащей в торцовой части поперечную перегородку с обтекателем, камера смешения с диффузором закреплена в корпусе радиальными штифтами, которые сопряжены с пазами, выполненными на камере смешения.

2. Газовый эжектор по п. 1, отличающийся тем, что входной конический участок сопла выполнен с углом от 12° до 18°.

3. Газовый эжектор по п. 1, отличающийся тем, что длина входного конического участка сопла составляет от 2,8 до 3,2 диаметра сопла в критическом сечении.

4. Газовый эжектор по п. 1, отличающийся тем, что ширина впадин турбулизатора пленки жидкости составляет от 0,1 до 0,2 диаметра сопла в критическом сечении.

5. Газовый эжектор по п. 1, отличающийся тем, что высота выступов турбулизатора пленки жидкости составляет от 0,03 до 0,05 диаметра сопла в критическом сечении.

6. Газовый эжектор по п. 1, отличающийся тем, что съемная втулка содержит кольцевую канавку, сообщенную каналами, расположенными в сопле, с впадинами турбулизатора пленки жидкости.